Par3 Controls Epithelial Spindle Orientation by aPKC-Mediated Phosphorylation of Apical Pins

نویسندگان

  • Yi Hao
  • Quansheng Du
  • Xinyu Chen
  • Zhen Zheng
  • Jeremy L. Balsbaugh
  • Sushmit Maitra
  • Jeffrey Shabanowitz
  • Donald F. Hunt
  • Ian G. Macara
چکیده

BACKGROUND Formation of epithelial sheets requires that cell division occurs in the plane of the sheet. During mitosis, spindle poles align so the astral microtubules contact the lateral cortex. Confinement of the mammalian Pins protein to the lateral cortex is essential for this process. Defects in signaling through Cdc42 and atypical protein kinase C (aPKC) also cause spindle misorientation. When epithelial cysts are grown in 3D cultures, misorientation creates multiple lumens. RESULTS We now show that silencing of the polarity protein Par3 causes spindle misorientation in Madin-Darby canine kidney cell cysts. Silencing of Par3 also disrupts aPKC association with the apical cortex, but expression of an apically tethered aPKC rescues normal lumen formation. During mitosis, Pins is mislocalized to the apical surface in the absence of Par3 or by inhibition of aPKC. Active aPKC increases Pins phosphorylation on Ser401, which recruits 14-3-3 protein. 14-3-3 binding inhibits association of Pins with Gαi, through which Pins attaches to the cortex. A Pins S401A mutant mislocalizes over the cell cortex and causes spindle orientation and lumen defects. CONCLUSIONS The Par3 and aPKC polarity proteins ensure correct spindle pole orientation during epithelial cell division by excluding Pins from the apical cortex. Apical aPKC phosphorylates Pins, which results in the recruitment of 14-3-3 and inhibition of binding to Gαi, so the Pins falls off the cortex. In the absence of a functional exclusion mechanism, astral microtubules can associate with Pins over the entire epithelial cortex, resulting in randomized spindle pole orientation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia

Cell polarity is essential for generating cell diversity and for the proper function of most differentiated cell types. In many organisms, cell polarity is regulated by the atypical protein kinase C (aPKC), Bazooka (Baz/Par3), and Par6 proteins. Here, we show that Drosophila aPKC zygotic null mutants survive to mid-larval stages, where they exhibit defects in neuroblast and epithelial cell pola...

متن کامل

Discs Large Links Spindle Orientation to Apical-Basal Polarity in Drosophila Epithelia

Mitotic spindles in epithelial cells are oriented in the plane of the epithelium so that both daughter cells remain within the monolayer, and defects in spindle orientation have been proposed to promote tumorigenesis by causing epithelial disorganization and hyperplasia. Previous work has implicated the apical polarity factor aPKC, the junctional protein APC2, and basal integrins in epithelial ...

متن کامل

aPKC Inhibition by Par3 CR3 Flanking Regions Controls Substrate Access and Underpins Apical-Junctional Polarization

Atypical protein kinase C (aPKC) is a key apical-basal polarity determinant and Par complex component. It is recruited by Par3/Baz (Bazooka in Drosophila) into epithelial apical domains through high-affinity interaction. Paradoxically, aPKC also phosphorylates Par3/Baz, provoking its relocalization to adherens junctions (AJs). We show that Par3 conserved region 3 (CR3) forms a tight inhibitory ...

متن کامل

Pins is not required for spindle orientation in the Drosophila wing disc

In animal cells, mitotic spindles are oriented by the dynein/dynactin motor complex, which exerts a pulling force on astral microtubules. Dynein/dynactin localization depends on Mud/NUMA, which is typically recruited to the cortex by Pins/LGN. In Drosophila neuroblasts, the Inscuteable/Baz/Par-6/aPKC complex recruits Pins apically to induce vertical spindle orientation, whereas in epithelial ce...

متن کامل

Drosophila aPKC is required for mitotic spindle orientation during symmetric division of epithelial cells.

Epithelial cells mostly orient the spindle along the plane of the epithelium (planar orientation) for mitosis to produce two identical daughter cells. The correct orientation of the spindle relies on the interaction between cortical polarity components and astral microtubules. Recent studies in mammalian tissue culture cells suggest that the apically localised atypical protein kinase C (aPKC) i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010